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CHAPTER 5

Evaluating Learning for Intelligence

“Intelligence is the ability to adapt to change”
—Stephen Hawking



 Typically, the most laborious tasks within a machine learning project 
are identifying the appropriate model and engineering features, which 
make a substantial difference to the output of the model. 

 In fact, the features chosen can often have more impact on the quality 
of a model compared to the model choice itself. 

 Therefore, it is important to evaluate the learning algorithm that will 
determine the model’s intelligence to predict the output of an 
unknown sample.



# Model Development and Workflow



To successfully deploy a machine learning model, there are several stages of development and evaluation that take place

The first stage is the prototype phase.

During this phase, a prototype is created through testing various 
models on historical data to determine the best model.

Hyperparameter tuning, is a requirement of model training.

Once the best prototype model is chosen, the model is tested and 
validated. Validating a model requires splitting datasets into training, 
testing, and validation sets.

Once the model has been successfully validated, it is deployed to 
production. 

The model is then usually evaluated by one (or several)
performance metrics.



# Why Are There Two Approaches to 
Evaluating a Model?



 A deployed machine learning model consumes data from two sources: 
historical data (or the data that is used as the experience to be learned from) and live data.

 Many machine learning models assume stationary distribution data—
that the data distribution is constant over time. 

 However, this is atypical of real life, as distributions of data often change over time—known as a distribution 
shift. 

 e.g./ model that predicts the side effects of medications to patients based on their health profile. 

 The distribution of relevant side effects based on patient data can vary quickly over time, and hence it is 
essential or a model to detect a shift in distribution and accordingly evolve the model.



 The model is evaluated based on live data (e.g., data that enters the system in real-time).

 This evaluation is conducted using validation metrics.

 The validation metrics were previously configured using historical data.

 Model performance that is similar to or within a threshold of 
permissibility when evaluated on live data is deemed as a model that continues to fit the data. 

 Degradation of model performance indicates that the model does not fit the data and 
requires retraining.



There are two ways of evaluating a machine learning model: 
offline evaluation and online (or live) evaluation.

Offline evaluation 

measures the model based on metrics learned and 
evaluated from the historical, stationary, distributed 
dataset. 

Metrics such as accuracy and precision-recall are 
typically used within the offline training stage.

Offline evaluation techniques include the hold-back 
method and n-fold cross-validation.

Online evaluation

refers to the evaluation of metrics once the model s deployed. 

The key takeaway is that these metrics may differ from the 
metrics used to evaluate performance when the model is 
deployed live. 

For instance, a model that is learning on new pharmacological 
treatments may seek to be as precise as possible in training 
and validation; but when placed online, it may need to consider 
business goals such as budget or treatment value when 
deployed. 

Online evaluation, particularly in the digital age, can support 
multivariate testing to understand best-performing models.



Feedback loops 

are key to ensuring systems are performing as intended and 
help to understand the model in the context of use better. 

human agent 
automated through a contextually intelligent agent 
users of the model

Validation: 

 It is important that the evaluation of a machine learning 
model is based on a statistically independent dataset and not 
on the datasetit is trained on.

 By evaluating the model with previously unseen data, there 
is a better estimate of the generalization error. 

 Methods such as n-fold cross-validation discussed are useful 
techniques for this purpose. 

 Often the data used is more important than the algorithm 
choice;  the better the features used, the greater the 
performance of the model.



• Train test split
Some machine learning techniques may return one solution, whereas others may produce several. It is often a case of 
gathering their outputs(also referred to as hypotheses, or learned models) and evaluating their outputs.

The assessment of hypotheses is conducted through evaluating the predictive accuracy, comprehensibility, or utility.

Predictive accuracy refers to the accuracy at which theagent performs the task of classification. 
Comprehensibility refers to how well we as humanscan understand the output. 
Utility refers to the problem-specific measure of worth. 
After the assessment is complete, a candidate hypothesis is chosen.

• Hold back method
• N fold-cross validation
• Monte-Carlo Cross-Validation
• ------------------------------try many algorithms



N/K fold-cross validation



# How can I evaluate my model?

• Aim of model
• Evaluation Metrics     
metrics package(R)
scikit-learn(Python)



Classification
• Accuracy
• Precision
• Recall
• F1-score
• Confusion matrix
• log-loss (logarithmic loss)
• AUC (area under the curve)



confusion matrix:



Accuracy
Accuracy is the simplest technique used in identifying whether a model is making correct predictions. 

It is calculated as a percentage of correct prediction over the total predictions made.

Accuracy = number of correct predictions/number of total predictions

Accuracy is a general metric that does not consider the division between classes. 
Therefore, it does not consider misclassification or the associated penalty with misclassification.

For instance, a medical misdiagnosis that is a false positive (e.g., take a patient diagnosed with breast cancer when they do not 
have it) has substantially different consequences compared to a false negative, whereby a patient is told that they do not have 
breast cancer when in fact they do. 

A confusion matrix breaks down the correct and incorrect classifications made by the model and attributes them to the appropriate 
label.

As a result, accuracy can be rewritten as the following:
Accuracy = (correctly predicted observation)/(total observation) = 
(TP + TN)/(TP + TN + FP + FN)



Per-class accuracy is an extension of accuracy that takes into account 
the accuracy of each class. As a result, the preceding example has a 
per-class accuracy of (80% + 40%)/2 = 60%. 

From the confusion matrix, it is determined that the positive class 
has greater accuracy than the negative class. 
The accuracy of the positive classification is 20/25 = 80%. 
The negative class has an accuracy of 10/25 = 40%. 

Both metrics differ from the overall accuracy of the model, which 
would be determined as (20 + 10)/50 = 60%. 

It is apparent how a confusion matrix adds more detail to the overall 
accuracy of a machine learning model.

Per-class accuracy is useful in distorted problems where there are a larger 
number of examples within one particular class compared to another.

The class with greater examples dominates the calculation, and therefore 
accuracy alone may not suffice for the nature of your model; thus it is useful 
to evaluate per-class accuracy also.



precision/recall?
Precision evaluates how many items are truly relevant compared to 
the total number of items correctly classified. 
Recall evaluates how many items are predicted to be relevant by the 
model from the items that are relevant.

• Precision: (correctly predicted Positive)/(total predicted Positive) =
TP/TP + FP

• Recall: (correctly predicted Positive)/(total correct Positive 
observation) = TP/TP + FN

Specificity refers to how well the model performs at returning 
incorrect 
• Specificity: (correctly predicted Negative)/(total Negative 
observation) = TN/TN + FP

• Sensitivity?

• Figure 5-3. Specificity 
classification diagram



F-measure

• Imagine you have developed a disease 
detection model:

• - **Precision:** If the model predicts "this 
person is sick," how likely is it that they are 
truly sick?  

• - **Recall (Sensitivity):** Out of all the actual 
sick individuals, how many has the model 
successfully identified?  

• - **Specificity:** Out of all the healthy 
individuals, how many has the model correctly 
classified as healthy?  

F-measure goes beyond the arithmetic mean and 
calculates the harmonic mean of precision and recall:

Where p denotes precision and r denotes recall.

F-1 Score=



Logarithmic loss

Logarithmic loss (or log-loss for short) is used for problems 
where a continuous probability is predicted rather than a class 
label. 

Log-loss provides a probabilistic measure of the confidence of 
the accuracy and considers the entropy between the 
distribution of true labels and predictions.

For a binary classification problem, the logarithmic loss would 
be calculated as follows:

Where Pi is the probability of the ith data point belonging to a 
class and yi the true label (either 0 or 1) and N is number of 
cases.



AUC or ROC?
 The AUC (area under curve)plots the rate of true positives to the 

rate of false positives. 

 The AUC enables the visualization of the sensitivity and specificity 
of the classifier. It highlights how many correct positive 
classifications can be gained allowing for false positives.

 The curve is known as the receiver operating characteristic curve, 
or ROC as shown in Figure 5-2.

 A high AUC or greater space underneath the curve is good, and a 
smaller area under the curve (or less space under the curve) is 
undesirable. 

 In Figure 5-2, test A has better AUC as compared to test B, as the 
AUC for test A is larger than for test B.

 The ROC visualizes the trade-off between specificity and 
sensitivity of the model.



Regression

• root-mean-squared error 
(RMSE)

• mean-squared error (MSE)
• mean-absolute error (MAE)
• median absolute percentage 

error (MAPE)
• R2





• RMSE
RMSE calculates the square root of the sum of the average distance 
between predicted and actual values. This can also be understood 
as the 
average Euclidean distance between the true value and predicted 
value 
vectors. A criticism of RMSE is that it is sensitive to outliers.

where yi denotes the actual value and yˆi denotes predicted value.

• MAE

• MSE

Percentiles of errors
Percentiles (or quantiles) of error are more robust as a result of being less sensitive 
to outliers. Real-world data is likely to contain outliers, and thus it is often useful to 
look at the median absolute percentage error (MAPE) 
rather than the mean.

where yi denotes the actual value and yˆi denotes predicted value.The MAPE is less 
affected by outliers by using the median of the dataset. A threshold or percentage 
difference for predictions can be set for a given problem to give an understanding of 
the precision of the regression estimate. The threshold depends on the nature of the 
problem.

• Mean Absolute Percentage Error:

• MAPE = (1/n) * Σ(|yi - ŷi| / |yi|) * 100%

MAE = (1/n) * Σ|yi - ŷi|

MSE = (1/n) * Σ(yi - ŷi)²

RMSE = √(1/n) * Σ(yi - ŷi)²

• R² = 1 - (SSR/SST) = 1 - Σ(yi - ŷi)² / Σ(yi - ȳ)²

• SSR is the sum of squared residuals
• SST is the total sum of squares
• yi is the actual value
• ŷi is the predicted value
• ȳ is the mean of the actual values



# dealing with datasets



An experienced data scientist treats all data with suspicion.

 Skewed Datasets,Anomalies,Rare Data,inconsistent,imbalanced class 
examples, outliers 

 can all significantly affect the performance of a model. 

 Having more examples within one class compared to another can lead to an 
underperforming model. 

 The effect of large outliers can be mitigated using percentiles of error. 

 good data cleansing, removal of outliers, and normalization of variables



Parameters and Hyperparameters tuning
Hyperparameters and parameters are often used interchangeably, yet there is a difference between the two. 
Machine learning models can be understood as mathematical models that represent the relationship between aspects of data.
Model parameters are properties of the training dataset that are learned and adjusted during training by the machine learning model. 
Model parameters differ for each model, dataset properties, and the task at hand. 

 Model hyperparameters are parameters to the model building process that are not learned during training. 
 Hyperparameters can make a substantial difference to the performance of a machine learning model. 
 Hyperparameters define the model architecture and effect the capacity of the model, influencing model flexibility. 
 Hyperparameters can also be provided to loss optimization algorithms during the training process.
 Optimal setting of hyperparameters can have a significant effect on predictions and help prevent a model from overfitting. 
 Optimal hyperparameters often differ between datasets and models.

• neural network, for example, hyperparameters would include the number and size of hidden layers, weighting, learning 
rate, and so forth. 

• Decision trees hyperparameters would include the desired depth and number of leaves in the tree. 
• Hyperparameters with a support vector machine would include a misclassification penalty term.



Tuning Hyperparameters

• Hyperparameter tuning or optimization is the task of 
selecting a set of optimal hyperparameters for a 
machine learning model. 

• Optimized hyperparameters values maximize a 
model’s predictive accuracy. 

• Hyperparameters are optimized through running 
training a model, assessing the aggregate accuracy, 
and appropriately adjusting the hyperparameters. 

• Through trialing a variety of hyperparameter values, 
the 

• best hyperparameters for the problem are 
determined, which improves overall model accuracy.

Hyperparameter Tuning Algorithms

Hyperparameter tuning is like training a machine 
learning model. 

The ask at hand is one of optimization. 

Model parameters can be expressed as a loss function, 
whereas hyperparameters cannot be expressed as 
such, as it depends entirely on the model training 
process. 

There are several approaches to hyperparameter 
tuning, with the most common being
grid search and random search.



Grid Search

The grid search is a simple, effective, yet resource expensive 
hyperparameter optimization technique that evaluates a grid of 
hyperparameters. The method evaluates each hyperparameter and 
determines the winner. For example, if the hyperparameter were the 
number of leaves in a decision tree, which could be anywhere from n = 2 to 
100, grid search would evaluate each value of n (i.e., points on the grid) to 
determine the most effective hyperparameter.
It is often a case of guessing where to start with hyperparameters, 
including minimum and maximum values. The approach is typical of trial 
and error, whereby if the optimal value lies toward either maximum or 
minimum, the grid would be expanded in the appropriate direction in an 
attempt to further optimize the model’s hyperparameters.

Random Search

Random search is a variant of grid search that evaluates a random sample 
of grid points. Computationally, this is far less expensive than a standard 
grid search. Although at first glance it would appear that this is not as 
useful in finding optimal hyperparameters.The simplicity and better-than-expected 
performance of a random search means that it is often chosen over grid 
search. Both grid search and random search are parallelizable.
More intelligent hyperparameter tuning algorithms are available that 
are computationally expensive as the result of evaluating which samples 
to try next. These algorithms often have hyperparameters of their own. 

Bayesian optimization, random forest smart tuning, and derivative-free 
optimization are three examples of such algorithms.



# Statistics   



Multivariate Testing
Multivariate testing is an extremely useful method of determining which model is best for the particular problem at hand.
Multivariate testing is known as statistical hypothesis testing and determines the difference between a null hypothesis and 

alternative hypothesis.

The null hypothesis is defined as the new model not affecting the average value of the performance metric; 
whereas the alternate hypothesis is that the new model does change the average value of the performance metric.

Multivariate testing compares similar models to understand which is performing best or compares a new model against an 
older, legacy model. 
The respective performance metrics are compared, and a decision is made on which model to proceed with.

The process of testing is as follows:
1. Split the population into randomized control and experimentation groups.
2. Record the behavior of the populations on the proposed hypotheses.
3. Compute the performance metrics and associated p-values.
4. Decide on which model to proceed with.Although the process seems relatively simple, there are a few key aspects for 
consideration.



Which Metric Should I Use for Evaluation?

Choosing the appropriate metric to evaluate your model depends on the use case.
Consider the impact of false positives, false negatives, and the consequences of such predictions.
Furthermore, if a model is attempting to predict an event that only happens 0.001% of the time, an accuracy of 99.999% can be reported but not 
confirmed. 
Build the model to cater to the appropriate metrics.
One approach is to repeat the experiment, thus performing repeat evaluations.
Although not a fail-safe, this reduces the change of illusionary results.
If there is indeed change between the null and alternate hypothesis, the difference will be confirmed.

Correlation Does Not Equal Causation
The phrase correlation does not equal causation is used to stress that a correlation between two variables does not suggest that one causes the 
other.

Correlation refers to the size and direction of a relationship between two or more variables.
Causation, also known as cause and effect, emphasizes that the occurrence of one event is related to the presence of another event. 

It may be tempting to assume that one variable causes the other; however, in models with several features, there may be hidden factors that cause 
both 
variables to move in tandem.For instance, smoking tobacco is a cause that increases the risk of developing a variety of cancers. 
However, it may be correlated with alcoholism, but it does not cause alcoholism

What Amount of Change Counts as Real Change?
Defining the amount of change required before the null hypothesis is rejected once again depends on the use case.
Specify a value at the beginning of the project that would be satisfactory and adhere to it.



Types of Tests, Statistical Power, and Effect Size

There are two main types of tests—one-tailed and two-tailed tests.

One tailed tests evaluate whether the new model is better than the original. 
However, it does not specify whether the model is worse than the baseline. 
One-tailed tests are thus inherently biased. 

With two-tailed tests, the model is tested for the possibility of change in two directions—positive and negative.

Statistical power refers to the probability that the difference detected during the testing reflects a real-world difference.
Effect size determines the difference between two groups through evaluating the standardized mean difference between two sets. 
Effect size is calculated as the following:
Effect size = ((mean of experiment group) – (mean of control group))/standard deviation

Checking the Distribution of Your Metric
Many multivariate tests use the t-test to analyze the statistical difference between means. 
The t value evaluates the size of the difference relative to the variation in your sample data.

However, the t-test makes assumptions that are not necessarily satisfied by all metrics.
For instance, the t-test assumes both sets have a normal, or Gaussian, distribution.

If the distribution does not appear to be Gaussian, select a nonparametric test that does not make assumptions about a Gaussian 
distribution, such as the Wilcoxon–Mann–Whitney test.



Determining the Appropriate p Value
Statistically speaking, the p value is a calculation used in hypothesis testing that represents the strength of the evidence.

The p value measures the statistical significance, or probability, that a difference would arise by chance given there was no real difference 
between two populations.

It provides the evidence against the null hypothesis and is a useful metric for stakeholders to draw conclusions from.

A p value lies between 0 and 1, and is interpreted as follows:
• a p value of ≤ 0.05 indicates strong evidence against the null hypothesis, thus rejecting the null hypothesis
• a p value of > 0.05 indicates weak evidence against the null hypothesis, hence maintaining the null hypothesis
• a p value near 0.05 is considered marginal and could swing either way

The smaller the p value, the smaller the probability that the results are down to chance.

How Many Observations Are Required?

The quantity of observations required is determined by the statistical power demanded by the project. Ideally, this should be determined at the 
beginning of the project.

Data Variance
The control and experimentation sets could be biased as the result of not being split at random. 
This may result in biases in the sample data. 
If this is the case, other tests can be used, such as Welch’s t-test, which does not assume equal variance.



How Long to Run a Multivariate Test?

The duration of time required for your multivariate testing is 
ideally the amount of time required to capture enough 
observations to meet the defined statistical power. 

It is often useful to run tests over time to capture 
a representative, variable sample.

When determining the duration of your testing phase, consider 
the novelty effect, which describes how user reactions in the 
short term are not representative of the long-term reactions.
For instance, whenever Facebook updates their news feed 
layout or design, there is an uproar. 

However, this soon subsides once the novelty effect has worn 
off. Therefore, it is useful to run your experiment for long 
enough to overcome this bias. 
Running multivariate tests for long periods of time are typically 
not a problem in model optimization.

Spotting Distribution Drift

It is key to measure ongoing performance of your machine learning 
model once deployed. Data drifts and system development require the 
model to be confirmed against the baseline. 
Typically, this involves monitoring the offline performance, or 
validation metric, against data from the live, deployed model. 

If there is a sizeable change in the validation metric, this 
highlights the need to revise the model through training on new data. 
This can be done manually or automated to ensure consistent 
reporting and confidence in the model.

Keep a Note of Model Changes

Keep a log of all changes to your machine learning model with notes 
on changes. Not only does this serve as a change log for 
stakeholders, it provides a physical record of how the system has 
changed over time. 

The use of versioning software within a development enviornment 
(test/staging to live deployment) will enable software changes to 
automatically be noted. Versioning software provides a form of 
technical governance and can be used to deploy software with 
extensive rollback and backup facilities.
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